
 180

Ada User Journal Volume 39, Number 3, September 2018

Using Ada in Non-Ada Systems

A Marriott, U Maurer

White Elephant GmbH, Beckengässchen 1, 8200 Schaffhausen, Switzerland; email: software@white-elephant.ch

Abstract

This article is based on the industrial presentation
“Using Ada in non-Ada systems” which was given
at the 2018 Ada-Europe conference in Lisbon.

The presentation was an experience report on our
use of Ada packages within existing non-Ada
embedded microprocessor based systems.

Keywords: GCC, Modula-2, C, ZFA

1 History

In the late eighties, when we first started replacing dis-

crete electronics with embedded microprocessors, there

were very few Ada compilers available, especially for

microprocessors, and those that did exist were slow, re-

quired vast resources and were very expensive.

As a consequence, and because we wanted to use a highly

typed language rather than use the ubiquitous C, we

decided to implement our systems in ISO 10514

Modula-2. Modula-2 is a programming language invented

by Niklaus Wirth that has many features in common with

Ada. For example, it's verbose non-ambiguous syntax and

the separation of specification and implementation into

separately compiled units.

Originally we used cross compilers, compiling Modula-2

source directly into the target machine code. However,

over time it became increasingly difficult to find

Modula-2 compilers for the new microprocessors that

were coming onto the market.

For this reason we switched to using a Modula-2

translator that translates Modula-2 into C. This machine

generated C is then compiled into the target machine

code. We rarely look at this machine-generated C code

– preferring to treat it as some form of intermediary

"binary".

None the less our Modula-2 is translated into C and it is

this C that is compiled and linked to form our embedded

hard real-time systems. Later in this article, when I

present how and why we have started using Ada in our

systems, it should be noted that we are effectively talking

about using Ada in a predominantly C environment. The

fact that we ourselves don't actually program in C, or even

know how to program in C, is a luxury we have been

afforded but that shouldn't distract from the usefulness or

relevancy of this article.

We have a large amount of well-established code that

executes on a multitude of platforms and that uses our

own proprietary multitasking run-time. Management is

unlikely to sanction the conversion of this code base into

Ada - if only because the risk of introducing errors would

far out way any perceived benefit of coding exclusively in

Ada.

However this is not to say that new features or features

that have to be substantially modified couldn’t be written

in Ada, provided that an affordable Ada compiler exists

for the target microprocessor architecture and if the code

can be integrated into the existing system.

Until recently, we have been using the Wind River Diab

tool chain to build our executables (in ELF format with

DWARF debugging information) for Motorola M68332

and Coldfire microprocessors. We have no intention of

touching these systems. However our most recent

hardware is ARM based and we have also switched C

compiler and now use the Gnu Compiler Collection

(GCC).

In fact we use GCC version 6.3.1 to compile our C code

for ARM which is the same version of the GCC that

AdaCore releases under GPL 2017 for compiling Ada for

ARM. So the challenge has been to write code in Ada and

then use GNAT to compile it and link it together with our

existing C code.

An important caveat is that we are not talking about using

full Ada. A lot of the power of Ada comes from language

features that depend on its runtime. However we already

have a runtime. Rather than modify the Ada runtime to

use our runtime or modify our runtime to use Ada's, we

decided, at least for now, that the simplest course of

action is to restrict ourselves to a subset of Ada that

doesn't require a runtime.

This is what is known as the Zero Footprint profile for

Ada.

Exactly what Zero Footprint Ada means for any particular

system depends on which pragma restrictions are declared

in the file System.ads

For example a typical ZFA could be defined as:

pragma Restrictions (No_Exception_Propagation);

pragma Restrictions (No_Implicit_Dynamic_Code);

pragma Restrictions (No_Finalization);

pragma Restrictions (No_Tasking);

pragma Restrictions (No_Delay);

pragma Discard_Names;

These restrictions mean we lose a lot of nice features of

Ada. Features such as:

 Tasks

A. Marr iot, U. Maurer 181

Ada User Journal Volume 39, Number 3, September 2018

 Protected objects

 Controlled types

 The delay statement

 Dynamic storage allocation using new

 Exception propagation

In addition to the above we also voluntarily imposed

additional restrictions to reduce Ada down to the level we

wanted to support.

For example our target microprocessor has no fixed point

hardware therefore any code that uses floating point will

be exceedingly slow. To prevent the accidental use of

floating point we added

pragma Restrictions (No_Floating_Point);

into System.ads.

Another restriction, at least initially, is to forego Ada

functions that return unconstrained types. This is because

variable length results are returned to the caller using

what GNAT terms the secondary stack. However the

microprocessors we are currently using have very little

RAM, therefore we can ill afford the luxury of having a

second stack for each and every task.

Consequently we added

pragma Restrictions (No_Secondary_Stack);

into System.ads.

The main consequence of this decision is that we can’t

write Ada functions that return strings nor can we use

attributes such as ‘image or ‘img.

We also initially decided to restrict ourselves to writing

pre-elaborated packages. By declaring all our packages

"with preelaborate" or "with pure" and including

pragma Restrictions (No_Elaboration_Code);

in system.ads we forego elaboration.

Without elaboration:

1. Global variables can only be initialised to values

evaluated at compile time

2. Packages may not have a body, i.e. code between the

begin and end of the package implementation.

3. Pre-elaborated packages may only call packages that

are themselves pre-elaborated or pure.

However, even with all these restrictions we believe that

there is still enough left of Ada to make integration

attractive. We have always considered Modula-2 to be a

poor man's Ada. However, in our opinion, even a severely

cut back Ada is better than programming in Modula-2 and

we can only imagine how much of an improvement it

must be over writing in C.

Ada is obviously syntactically superior to C and even

though they share the same roots, Ada offers many

advantages over Modula-2

For example:

 Named parameters

 Named fields in constructors

 Private types, functions and procedures.

 Bit level specification in representation clauses.

Representation clauses are extremely useful when

interfacing to hardware and third party protocols. An

enumeration that is not represented as a complete byte is

accessed in most computer programming languages by a

combination of bit masks and shifting – a typically error

prone endeavour that is handled automatically by Ada.

2 Getting Started

The simplest form of integration is when a program

written in Modula-2 calls a parameter-less procedure

written in Ada.

To make procedures accessible from other modules,

Modula-2 mangles the procedure names by prefixing

them with the name of the module together with a

separating underscore. Thus procedure Y defined in the

definition of module X would be called X_Y.

In Ada a similar thing happens. The global procedure

name is composed of the package name followed by a

double underscore followed by the name of the procedure,

and the whole name rendered to lowercase. Thus

procedure Y defined in the specification of package X

would be called x__y

Therefore to access an Ada procedure from C you first

need to declare the Ada procedure as an external

procedure

extern void adaunit__adaprocedure (void);

and then call it using its full mangled name

adaunit__adaprocedure();

To do this in Modula-2 we have to import the package

and then call the procedure in the same way we would for

a procedure written in Modula-2

IMPORT AdaUnit;

AdaUnit.AdaProcedure;

As this is written in the same way that a Modula-2

procedure would be called we need to inform the

translator that the procedure being called is an Ada

procedure rather than one written in Modula-2.

This is achieved by creating a foreign definition module

that tells the Modula-2 translator which language the

procedures within the module are written in.

DEFINITION MODULE ["Ada"] AdaUnit;

 PROCEDURE AdaProcedure;

END AdaUnit.

The above informs the translator that the procedure

AdaProcedure in the module AdaUnit is written in Ada

and therefore will have its global name mangled to

adaunit__adaprocedure.

182 Using Ada in Non-Ada Systems

Volume 39, Number 3, September 2018 Ada User Journal

We then have to write and compile the procedure in Ada

package body AdaUnit is

 procedure AdaProcedure is

 begin

 null;

 end AdaProcedure;

end AdaUnit;

and then make a specification so that it is exported.

package AdaUnit is

 procedure AdaProcedure;

end AdaUnit;

The Ada package has to be compiled using GNAT and the

Modula-2 translated into C which is then compiled by the

GCC. The resultant objects then have to be linked

together to produce an executable.

In order that certain Ada features are made available, the

compiler requires a number of ads files to be found

somewhere in the source search path.

A package implementation is not required because the

implementation is intrinsic (built into) the compiler.

For example, using Ada.Unchecked_Conversion requires

that the file a-unccon.ads to be found in the source file

search path.

Unfortunately GNAT has the very strange restriction that

these specification files MUST have the "crunched" file

names listed below. It does not support their being named

according to the more usual convention derived from the

full name of the package they contain. This is presumably

some sort of historical left over, which is a pity, because

these names are both ugly and unreadable.

 a-except.ads (ada.exceptions)

 a-unccon.ads (ada.unchecked_conversions)

 interfac.ads (interfaces)

 s-maccod.ads(system.machine_code)

 s-stoele.ads (system.storage_elements)

 s-unstyp.ads (system.unsigned_types)

3 Debugging

If the executable had been written entirely in Ada and ran

on a machine sitting on a nearby desktop, we could have

used something like GPS for debugging. However this is

not the case. Our code is a mixture of Modula-2, C and

now Ada. Moreover the machines are physically remote

and not easily accessible.

So when something goes wrong our machines generate a

memory dump and then, sometime later, we use a static

dump analyser. The analyser uses the debug information

that is stored in the executable file by the compiler and

linker. It expects this information to be written according

to the DWARF standard.

Fortunately for us GNAT is based on the GCC, which

accepts the switch -gdwarf-3. This switch causes GNAT

to supply debugging information according to version 3 of

the DWARF standard and to place this information into

the ELF executable.

Our challenge has been to enhance our analyser to better

support bit fields and sub-ranges – something it never had

to deal with when the executables were built purely from

C.

Another debugging problem concerns the GCC's link time

optimisation feature. This feature is enabled using the -lto

switch and is required for the in-lining explained later in

section 7.

Entries within the DWARF debugging information are

contained within compilation units. These compilation

units are Ada packages or Modula Modules. The full

global name of an entity can normally be derived by

prefixing the name of the compilation unit with the name

of the entity. Unfortunately a side effect of using the lto

feature is that the compilation units are all renamed

<artificial>!

To solve this problem all our Modula-2 & C variables and

procedures have to be name mangled in order that we can

differentiate and know in which module the entity was

defined. We have to do this even if the entity is not

exported, i.e. is only used locally and therefore, from the

linker's perspective, does not have to have a globally

unique name.

Fortunately for us, Ada also mangles all its names - even

if they are not exported. So this is not a problem and we

can therefore use Link Time Optimization.

4 Functions

To make our example a little more useful we can replace

the parameter-less procedure with a function that

increments a global variable and returns its new value.

package AdaUnit is

 function AdaFunction return Integer;

end AdaUnit;

package body AdaUnit is

 TheGlobal : Integer;

 function AdaFunction return Integer is

 begin

 TheGlobal := TheGlobal + 1;

 return TheGlobal;

 end AdaFunction;

end AdaUnit;

However when we try to link a program that calls

AdaFunction the linker complains that it is missing a last

chance handler for the function.

This is because the function will raise an exception when

TheGlobal reaches Integer'last. If this situation is not

explicitly handled, the Ada compiler will insert a call to

the last chance handler __gnat_last_chance_handler.

A. Marr iot, U. Maurer 183

Ada User Journal Volume 39, Number 3, September 2018

Of course, one could define a last chance handler and then

link this into the final program. However we chose not to.

Instead we chose to always explicitly handle Ada implicit

exceptions.

For example by rewriting the code so that the error

situation cannot arise:

function AdaFunction return Integer is

begin

 if TheGlobal < Integer'last then

 TheGlobal := TheGlobal + 1;

 return TheGlobal;

 else

 return Integer'last;

 end if;

end AdaFunction;

or by catching the exception

function AdaFunction return Integer is

begin

 TheGlobal := TheGlobal + 1;

 return TheGlobal;

exception

when Constraint_Error =>

 return Integer'last;

end AdaFunction;

By adding the switch -gnatw.x the Ada compiler will

generate a warning if an implicit or explicit exception is

not covered by a local handler.

Unfortunately Ada doesn't always get it right and we

often have false positives – occasions when Ada warns

that an exception may be raised when in fact this is not

possible.

In the following example Ada complains that

Constaint_Error might be raised when calling

The_Handler.all even though the explicit check for a null

pointer precludes this.

type Handler is access procedure;

The_Handler : Handler;

procedure Test is

begin

 if The_Handler /= null then

 The_Handler.all;

 end if;

end Test;

Interestingly, if we switch off warnings for the duration of

the code in question, the program still links. This

therefore shows that the compiler was, in fact, smart

enough to realise that the exception could not be raised.

Rather than disable and then re-enable warnings we prefer

to use the pragma Suppress to remove the specific check.

Suppressing checks can be selective. Typically we place

the code that is causing the problem within a declaration

block and add the appropriate pragma suppress between

the declare and begin statements.

For example:

declare

 pragma suppress (Access_Checks);

begin

We consider this less error prone than messing around

with warnings but we also hope that, as the compiler is

improved, it might one day warn us that these pragmas

are no longer necessary.

5 Initialising Globals

Global variables can be initialised using the standard Ada

syntax. In our example the global variable can be

initialised to forty two by declaring it as:

 TheGlobal : Integer := 42;

Initialising variables in this manner does not work without

a runtime to initialise the variable. Zero footprint Ada

does not have a runtime and so if used purely by itself it

would require an alternative mechanism to initialise

global variables. However we are using Ada within an

existing system, the runtime of which will initialise ALL

global variables, irrespective of the compiler used,

provided that all the compilers adhere to a few

conventions.

Fortunately for us, GNAT adheres to these conventions

and so its global variables are initialised in the same way

that global variables written in ether Modula-2 or C are.

How does this work?

Quite simply, global variables are placed in a section

called .bss if they are initialised to zero or in a section

called .data if they are initialised to anything else.

The following GCC linker script groups all the .bss

variables along will all uninitialized variables

(COMMON) together and sets two linker symbols to the

start and end addresses of the area of memory they have

been allocated. The same script groups all initialised data

together, assigns another pair of linker variables to their

start and end addresses and instructs the linker to place

their initialization values into ROM.

 .mdata :

 {

 __Data_Start = ABSOLUTE(.);

 (.data)

 __Data_End = ABSOLUTE(.);

 } > Ram AT > Rom

 .bss :

 {

 __Bss_Start = ABSOLUTE(.);

 *(.bss)

 *(COMMON)

 __Bss_End = ABSOLUTE(.);

 } > Ram

__Data_Rom = LOADADDR(.mdata);

__Bss_Size = __Bss_End - __Bss_Start;

__Data_Size = __Data_End - __Data_Start;

184 Using Ada in Non-Ada Systems

Volume 39, Number 3, September 2018 Ada User Journal

The runtime has access to the linker defined global

symbols __Data_Start, __Data_Rom, __Data_Size and

Bss_Size. Using these symbols the runtime can initialise

memory thus:

 MOVE (DataRom(),DataStart(),DataSize());

 FILL (BssStart(), 0, BssSize());

The first instruction copies the initial values of initialised

variables into the space occupied by the variables. The

second instruction initialises to zero all remaining

variables.

6 Ada calling Modula-2

The examples so far have shown how code written in

Modula-2 or C can call routines written in Ada however

these Ada routines would be severely restricted if they

were not able to communicate with portions of the

application written in languages other than Ada.

To be useful our Ada routines need to be able to call

routines written in Modula-2. This is achieved by

declaring the function as an import using the C calling

convention and by specifying its external name. In the

case of Modula-2 the external name is the name of the

module followed by an underscore followed by the name

of the procedure.

For example, the Modula-2 module ModulaUnit could be

defined as:

DEFINITION MODULE ModulaUnit;

 PROCEDURE ModulaFunction () : INTEGER;

END ModulaUnit.

And implemented as:

IMPLEMENTATION MODULE ModulaUnit;

 PROCEDURE ModulaFunction () : INTEGER;

 BEGIN

 RETURN 42;

 END ModulaFunction;

END ModulaUnit.

And then the function called from Ada as:

 procedure Example is

 function ModulaFunction return Integer

 with Import, Convention => C,

 External_Name => "ModulaUnit_ModulaFunction";

begin

 TheGlobal := ModulaFunction;

end Example;

This is all very well provided that the types are base types

that both Modula-2 and Ada agree are the same. Problems

arise when the types are represented differently. In these

cases a wrapper is required.

For example, in Modula-2 (and C) a Boolean is defined to

be eight bits wide. In Ada the Boolean type is defined to

be only one bit wide however the compiler is generally

free to allocate more than this for objects of type Boolean

– how much isn't defined by the language. Therefore

when Ada calls a Modula-2 function that returns a

Boolean we need to do this via a wrapper function.

For example:

If our Ada code wants to call the Modula-2 function

Hardware_Is_Available from module Ip we first define

the specification in Ip.ads as

function Hardware_Is_Available return Boolean;

and then define the wrapper in Ip.adb as

type Modula_BOOLEAN is new Standard.Boolean

with Size => 8;

 function Hardware_Is_Available return Boolean is

 function Ip_Hardware_Is_Available return

Modula_BOOLEAN

 with Inline, Import, Convention => C,

 External_Name => "Ip_HardwareIsAvailable";

begin

 return Boolean(Ip_Hardware_Is_Available);

end Hardware_Is_Available;

The astute will notice that the Modula-2 function that the

wrapper calls is declared as Inline. Which brings us nicely

onto the subject of in-lining.

7 In-lining

The relatively weak microprocessors we use cannot afford

the overhead of superfluous calls. Certain time critical

portions of our code must be in-lined for efficiency

reasons. The GCC is very good at in-lining provided the

–flto option is specified on the command line when

compiling C and – Winline when linking. In addition, in

order that Ada in-lines in the same way, we need to

specify the switch –gnatn2 when compiling our Ada

source code.

The result is very impressive; in-lining is possible

between units as well as between languages. The example

of the Boolean wrapper produces absolutely no extra code

- the wrapper keeps Ada happy without any additional

overhead.

8 Enumerations

In C, the amount of storage allocated to enumeration

types defaults to the word size of the target machine. In

our case this is 32 bits. However reserving 32 bits for

every enumeration is extremely wasteful for

microprocessors that are memory challenged, so we

compile using the switch --short-enums which directs the

GCC to use the least number of bytes possible to store

any given enumeration. This turns out to have been a very

fortunate decision because enumerations in Ada use the

same storage strategy, and so by using this switch we

make enumerations compatible between Ada and C.

A. Marr iot, U. Maurer 185

Ada User Journal Volume 39, Number 3, September 2018

9 Strings

Strings are another occasion when wrapper functions are

required.

In the following example, the Modula-2 procedure takes a

string as its parameter. Strings in Modula-2 are

unconstrained arrays of character and so the procedure

DefineComputerNameAs is defined as follows.

PROCEDURE DefineComputerNameAs (TheName :

ARRAY OF CHAR);

This translates into C as

extern void Nbns_DefineComputerNameAs(const

char [], unsigned long);

Where the unconstrained array of characters has been

translated into two parameters, the first being the start

address of the array and the second the number of

elements in the array.

To call this from Ada we need to provide a wrapper. For

example:

procedure Define_Computer_Name_As

(The_Name : String) is

 procedure Nbns_Define_Computer_Name_As

 (Name_Address : ADDRESS;

 Name_Size : CARD32)

 with Inline, Import, Convention => C,

 External_Name =>

 "Nbns_DefineComputerNameAs";

begin

 Nbns_Define_Computer_Name_As

 (The_Name'address, The_Name'length);

end Define_Computer_Name_As;

10 Exception Handling

The above example is not quite right. We shouldn't pass

the address of the String but the address of the first

character of the string. However if we code this then we

need to check that the string has at least one character and

decide what to do if it doesn't.

Ideally we would raise an exception. Unfortunately zero

foot print Ada precludes the propagation of exceptions,

however this does not mean that we cannot define

exceptions provided we catch them locally or use them

for other purposes.

Note however that the –gnatwh compiler switch to detect

declaration hiding does not detect the hiding of standard

exceptions. The Standard exceptions

 Constraint_Error

 Program_Error

 Storage_Error

 Tasking_Error

are implicitly raised by compiler checks. Therefore, to

avoid confusion, it is highly recommended not to declare

exceptions with these names.

Our existing Modula-2 system has an exception concept.

Our Modula-2 exceptions can be raised but not caught

and are always fatal. They stop the machine and produce

a memory dump for later analysis.

In the previous example, if we correct the code to pass the

address of the first character, Ada will complain that this

might raise an exception. So we need to include additional

code that explicitly handles that situation.

Empty_Name : exception;

begin

 Nbns_Define_Computer_Name_As

 (The_Name(The_Name’first)'address,

 The_Name'length);

exception

when Constraint_Error =>

 HALT (Empty_Name’identity);

end Define_Computer_Name_As;

The procedure HALT saves the exception identity and

stops the system. Our analyser can retrieve this identity,

which is nothing more than the address of the exception,

and convert it into its symbolic name.

11 Elaboration

Unlike C, Modula-2 has the concept of elaboration. It is

not as powerful as Ada – global variables cannot be

elaborated – but modules can have body code that is

executed at start-up before any of the exported procedures

can be called.

However our Ada packages only link to specific named

routines and there is no concept of using “with” to import

units written in anything other than Ada. Consequently

there is no Ada syntax or mechanism whereby Ada can be

instructed to elaborate a specific foreign unit.

And even if there were, we decided that all our Ada

packages are either pure or pre-elaborate.

However this decision turns out to be too much of a

restriction. Too much of our existing code requires the

Modula-2 module bodies to be executed prior to their

exported routines being made available. Not being able to

elaborate our Ada packages was also inconvenient.

Therefore we changed our strategy and decided to

implement and support elaboration.

The first problem was establishing the elaboration order.

If unit A calls unit B then unit B must be elaborated

before unit A is elaborated. If unit B calls other units then

these must be elaborated before unit B and so on. If any

unit calls a unit that has to be elaborated before itself, then

this is a cyclic dependency and must be regarded as an

error.

Because Modula-2 has the concept of elaboration our IDE

already had a mechanism for determining the elaboration

186 Using Ada in Non-Ada Systems

Volume 39, Number 3, September 2018 Ada User Journal

order of Modula-2 modules. So all we had to do was

extend this mechanism to include units written in Ada.

The IDE has to parse the Modula-2 source files and

process the IMPORT statements and parse the Ada source

files and process the with statements. Whilst the

Modula-2 IMPORTs indicate a unit dependency,

irrespective of language, the Ada with is restricted to

indicating the package's dependency only on other Ada

packages and does not include any dependency on units

written in other languages.

We were therefore obliged to enhance our IDE to

recognise a new pragma.

By default GNAT issues a warning when it encounters an

unrecognised pragma. This warning can be switched off

using the -gnatwG switch. Using this switch is potentially

dangerous and contrary to the Ada Reference Manual

specification that a warning be generated whenever an

unrecognised pragma is encountered. Therefore we had to

enhance our IDE to verify pragma names and issue our

own error message if it detected any unrecognised

pragmas, i.e. unrecognised by GNAT and not an

extension implemented by our own IDE.

So solve the elaboration problem we recognised the new

pragma Modula_Import. The pragma takes as its

parameter the name of a Modula-2 module.

For example: pragma Modula_Import (ModulaUnit);

Note: It isn’t quite that simple because Modula-2 module

names can have names that aren’t Ada identifiers.

However how we handled this anomaly is a detail beyond

the scope of this short article.

By processing the IMPORTs, withs and pragma

Modula_Import statements, our IDE can build the

dependency tree. Provided that there are no cyclic

dependencies it can then generate a table of procedures

that must be called at start-up before the main program is

entered.

For example:

extern void

__attribute__((weak)) ModulaUnit_BEGIN(void);

extern void

__attribute__((weak)) adaunit___elabb(void);

typedef void (*Unit_List[1])(void);

static const Unit_List Unit_Body_the_list = {

 ModulaUnit_BEGIN,

 adaunit___elabb};

The name of the elaboration routine for a Modula-2

module is the name of the module followed by _BEGIN

whilst the name of the elaboration routine for an Ada

package is the name of the package followed by elabb if

the implementation is being elaborated or elabs if the

specification requires elaboration.

There is no easy way to detect whether or not an Ada

package requires elaboration, so our IDE needs to assume

that all Ada packages might be elaborated unless directed

otherwise. This is implemented by the IDE building a

table of weak links to possible elaboration routines.

The use of weak external links means that if the unit did

not require elaboration and consequently the expected

elaboration routine was not generated, the linker would

not complain but instead leave the default null pointer in

the table. These null entries obviously have to be skipped

when processing the table.

int the_index;

 for (the_index = 0; the_index < 7ul; the_index++) {

 if (Unit_Body_the_list[the_index]!=0)

 Unit_Body_the_list[the_index]();

 };

To avoid possible cyclic dependencies it is sometimes

necessary that Ada (and the IDE) be told that the package

does not require elaboration. This is achieved using the

aspect "with preelaboration" or "with pure".

12 Interrupt routines

Our applications require that we write interrupt routines.

On ARM microprocessors, interrupt routines are nothing

other than parameter-less procedures whose addresses are

placed into the vector table.

Using standard Ada the address of the procedure is placed

into the vector table using the pragma Attach_Handler.

Unfortunately when we use this, GNAT complains that

the argument of pragma Attach_Handler must be a

protected procedure.

However protected types and procedures require a run-

time and are therefore not allowed in the Zero Footprint

Profile.

In any case, even if Attach_Handler was allowed, it is

unlikely that it would of any use because we need a

mechanism that allows a vector table to be generated that

has entries of procedures written in a mixture of

languages – not just Ada.

For this reason, our IDE builds the vector table. The IDE

is instructed to add a procedure into the vector table by

special constructs within the source.

In Modula-2 this is achieved by using the direct language

specification "Vector"

For example:

PROCEDURE ["Export", "Vector=36"] InterruptHandler;

In order that a similar thing could be achieved from

sources written in Ada, we further enhanced our IDE to

recognise an additional pragma Use_Vector

For example:

procedure Interrupt_Handler with Export;

pragma Use_Vector (36);

A. Marr iot, U. Maurer 187

Ada User Journal Volume 39, Number 3, September 2018

In the above example, the pragma Use_Vector instructs

the IDE to place the address of the exported, parameter-

less procedure Interrupt_Handler into interrupt vector

position 36.

13 The use of assembler

We haven't had cause to write much assembler but there

will always be occasions when this is necessary.

Fortunately this is possible. The GNAT package

System.Machine_Code provides the procedure Asm

which behaves in a similar and recognisable manner to

that of the standard GCC embedded assembler but with

the rather tiresome restriction that parameters can only be

reference by position rather than by name.

In the following example, written in C, the procedure

DisableInterrupts places the constant 1 into a register of

its choice that we symbolically call Mask which the MSR

instruction then loads into the Primask register.

__attribute__ ((always_inline)) inline

static void DisableInterrupts(void)

{

 asm volatile (

 "MSR primask, %[Mask];"

 :

 :[Mask] "r" (1)

 :"memory");

}

Unfortunately GNAT does not support the use of named

parameters and therefore in Ada the register used to house

the constant has to be referred to by its position in the list

of inputs (starting at zero)!

with System.Machine_Code; use

System.Machine_Code;

procedure Disable_Interrupts with Inline is

begin

 Asm ("msr primask, %0;",

 Inputs => Integer'asm_input ("r", 1),

 Clobber => "memory",

 Volatile => True);

end Disable_Interrupts;

Referring to parameters by their numeric position rather

than by name seems like a step back into the stone-age.

14 Results

In the guise of conducting a feasibility study, we did

exactly what we originally stated we wouldn't do. Rather

than wait until an opportunity arose that would benefit

from being written in Ada we decided to convert two

ARM based applications that already existed and had

already been written in Modula-2.

We didn't convert the whole application; we left the run-

time and a lot of low level interfaces written in Modula-2

but we did convert all the application specific modules

into Ada packages.

These included interrupt routines, interfaces to hardware

and, of course, interfaces to our proprietary multitasking

runtime.

So the port wasn't exactly trivial but on the other hand

because of the similarities between Modula-2 and Ada it

wasn't that difficult either.

We are pleased to report that the conversions were very

successful and we now have two of our ARM specific

applications written in Ada.

This is not to say that the conversion didn’t have any

problems. Unfortunately we did introduce a few errors as

part of the conversion process. These occurred when the

conversion was more complex than a simple syntax

change

We identified four areas where conversion errors were

likely to occur:

1. Ada has no syntax to increment or decrement a

variable so it is impossible to implement the

Modula-2 procedures INC and DEC without

resorting to generics.

2. Modifying the code to replace INC and DEC

statements with X:=X+1 and X:=X-1 respectively

presented an opportunity to accidently decrement

when we should have incremented and vice versa.

3. The Ada attribute ‘size returns the size of an object in

bits whereas the equivalent Modula-2 SIZE

procedure returns the size in bytes. Therefore one

must remember to divide ‘size by the number of bits

in a byte.

4. Expressions in Modula-2 are evaluated left to right

and so there is no need for the Ada constructs and

then and or else. Care is therefore required when

converting Modula-2 Boolean expressions.

5. In Modula-2 in parameters can be modified – thereby

saving a local variable. In Ada this is not allowed and

so a local variable must be explicitly created,

initialised and then used instead of the original in

parameter. This complicated code modification is

another opportunity to introduce subtle conversion

errors.

15 Conclusion

This article is an experience report. It does not present

anything particularly clever or original. Far from it. Our

goal in writing this article was to illustrate how easy it is

to integrate Ada into an existing non-Ada system and

thereby perhaps animate others in a similar situation to

use Ada where previously it would not have been

considered.

